Support Driven Wavelet Frame-based Image Deblurring

نویسندگان

  • Liangtian He
  • Yilun Wang
  • Zhaoyin Xiang
چکیده

The wavelet frame systems have been playing an active role in image restoration and many other image processing fields over the past decades, owing to the good capability of sparsely approximating piece-wise smooth functions such as images. In this paper, we propose a novel wavelet frame based sparse recovery model called Support Driven Sparse Regularization (SDSR) for image deblurring, where the partial support information of frame coefficients is attained via a selflearning strategy and exploited via the proposed truncated l0 regularization. Moreover, the state-of-the-art image restoration methods can be naturally incorporated into our proposed wavelet frame based sparse recovery framework. In particular, in order to achieve reliable support estimation of the frame coefficients, we make use of the state-of-the-art image restoration result such as that from the IDD-BM3D method as the initial reference image for support estimation. Our extensive experimental results have shown convincing improvements over existing state-of-theart deblurring methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Edge Driven Wavelet Frame Model for Image Restoration

Wavelet frame systems are known to be effective in capturing singularities from noisy and degraded images. In this paper, we introduce a new edge driven wavelet frame model for image restoration by approximating images as piecewise smooth functions. With an implicit representation of image singularities sets, the proposed model inflicts different strength of regularization on smooth and singula...

متن کامل

MRA Based Wavelet Frames and Applications: Image Segmentation and Surface Reconstruction

Theory of wavelet frames and their applications to image restoration problems have been extensively studied for the past two decades. The success of wavelet frames in solving image restoration problems, which includes denoising, deblurring, inpainting, computed tomography, etc., is mainly due to their capability of sparsely approximating piecewise smooth functions such as images. However, in co...

متن کامل

Wavelet Frame Based Image Restoration with Missing/damaged Pixels

This paper addresses the problem of how to recover degraded images with partial image pixels being missing during transmission or damaged by impulsive noise. A wide range of image restoration tasks are covered in the mathematical model considered in this paper, e.g. image deblurring, image inpainting and super-resolution imaging. Based on the assumption that nature images are likely to have a s...

متن کامل

Wavelet frame based surface reconstruction from unorganized points

Applications of wavelet frames to image restoration problems (e.g. image deblurring and inpainting) have been successful due to their redundancy and capability of sparsely approximating piecewise smooth functions like images (see e.g. [13, 14, 8]). However, wavelet frames have not yet been used for surface reconstruction problems. Recently in [6], connections between one of the wavelet frame ba...

متن کامل

An Efficient Algorithm for ℓ 0 Minimization in Wavelet Frame Based Image Restoration

Wavelet frame based models for image restoration have been extensively studied for the past decade [1, 2, 3, 4, 5, 6]. The success of wavelet frames in image restoration is mainly due to their capability of sparsely approximating piecewise smooth functions like images. Most of the wavelet frame based models designed in the past are based on the penalization of the l1 norm of wavelet frame coeff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1603.08108  شماره 

صفحات  -

تاریخ انتشار 2016